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A workable algorithm is proposed for reducing the Poincaré—Pontriagin generat-
ing equation which determines periodic solutions for small perturbations of two-
dimensional Hamiltonian systems to the special (standard) form for the class of
equations

2+ oazr+ P2 =¢f (z, 2"), e €1
where f is a polynomial, As an example of application, the problem of
estimating the number of cycles, in particular of stable periodic solutions, i. e,
of auto-oscillating modes, is considered. Results are illustrated on a specific
example,

1. Let us consider the class of equations

" + ax + P® = ef (z, z)
or of equivalent form systems
z =1y, '=——-ax—ﬁx3—|-e]‘(x,y) (1.1)

fz y) = Z. Zawy

j=1 i=0

where o and B are nonzero parameters, £ is a small parameter, and a;; are con-
stant coefficients.

An algorithm is proposed for reducing the Poincaré—Pontriagin generating equation
to some special form, It was shown in [1] that a generating equation can be represent-
ed in the form of an integral of some expression dependent on perturbations and the
periodic solution of the unperturbed input system. Integration is carried out along the
unperturbed system closed trajectory free of singular points (equilibrium states),

Below, the input integral form of the generating equation is expressed in terms
of elementary functions and complete elliptic integrals of the first and second kind.

In spite of the different behavior of solutions of the unperturbed system, with various
combinations of signs of o and @, the generating equation always reduces to the
same form, which we shall call standard, In specific problems the standard form was
directly calculated, for instance in [2].

We shall indicate all possible phase patterns of the unperturbed system z =y,
y = —ox — Pz®. Incases a) @ >0,f >0 andb) a>0, <O
we have a single cell filled by closed trajectories, and in casesc) a << 0, § > 0
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On auto-oscillations in two~dimensional dynamic systems 645

there are three cells in whose boundary pass two separatrix loops (* figure of eight"),
Case d) a << 0, P << O is of no interest,
Incase a) h e (0, co) correspond to closed trajectories y%/ 2 + ax?/ 2
4 Bat/4=h, ncase b) he (0, —a*/ 4P) and in case ) —h & (—a?/
4B, oo) ., values of b & (—a?/ 4B, 0) and h & (0, ) correspond to trajector-
ies lying, respectively, in- and outside of the figure of eight.
Let @;%) (k) be the expression for the standard form when B >0, %2 >0,
©;2 (h), when @ >0, <0, O (h), and when & << 0, p > 0, — o/
48 < b << 0.

Theorem, The standard form of the generating equation of system (1, 1) is

O (& (h)) = z @) (k (h)) (1.2)
OF) (k (B)) = AL (k®) (Pljare; () K (k) + (1.3)

Qi W) E (k) + B (%), s =1,2,3

where summation is carried out over odd j from unity to m; AS} and Bﬁf} are
algebraic functions; B{ = B% =0, B®) depends only on coefficients a3, j,

1=0,1,2,..., (n—1)/2], n>1; K (k) and E (k) are complete
elliptic integrals of the first and second kind, respectively; k = k (h) is the modulus
of elliptic integrals; Pﬁ,)/?w (k%) and  Q{72)+; (k?) are polynomials of power [n / 2]
4 j in A® which depends on coefficients dag,;, I =0,1,2,...,[n/2],
n > 0,and[zlis the integral part of number Z.

Proof of this theorem Q.P?ears in Sect, 2, where an algorithm of constructing poly-

nomijals Pﬁ,)mﬁ and Q[y/21+j, which does not require calculation of integrals, is
also proposed.

2. Let us transform (1, 1) to a more convenient form. In regions G filled by
closed trajectories of the unperturbed system and separated from separatrices we pass
from variables , y to variables J and O which represent action and angle, respect-
ively, defined by

1 oS (x, I
I= 5 §y(z hyda, 6=2&0D

8@ Iy={y@ r)de

y (x! h) = [2 (h —oaxr?/ 2 — ﬂx4/ 4)]‘/:

where integration is carried out along the closed trajectory of the unperturbed system,
and I, isthe coordinate of point Z of that trajectory.
We represent the transformation (z, y) — (I, 0) in the form

z=XI,0), y=Y (I,0) (2.1)
where functions X and Y are periodic with respect to 6 of period 2. The
substitution (2, 1) transforms system (1, 1) to

I' =e®(1,60), ®U,0)=7F(X,Y)Xe (2.2)
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0 =0o)+eQU,08), o{)=dn({)/d
QU,0)=—f(X,Y )X/
where @ and @ are functions analytic in G and periodic with respect to 8 of
period 2; , and ® (/) is the frequency on closed trajectories of the unperturbed
system, Note that in regions G ® (/) >> 0. Expanding function (® in Fourier ser-
ies oo
O (I,0) = D Oy (I)exp (ikh)
k=—c0
carrying out in (2, 2) the substitution

I= u—iZ%mk(zz)eXp(ike)

()
k=0

and neglecting terms of order &%, we obtain the system

u =0, (u), 0 = o (u)+ 0(e (2.3)
1 2 { 27 )
Dy (1) — ZES @ (u, 6)d6 — z—nS /(X,Y) Xy do

0 0

Thus the investigation of the input system with an accuracy to terms of order ¢2
reduces to the problem of investigation of the single differential equation

u = ed, (u) (2.4)
The equation
D, () =D (k) =0 (2.5)
which determines the equilibrium state of (2.4) is a generating equation. For faisly
small & == 0 the number of limit cycles in G does not exceed the number of real
roots of Eq, (2.9),
It follows from (2, 5) that the determination of @, (k) requires the knowledge

of the solution of the unperturbed system
.. __ OH - 5 _ oH oyt az? fzt
l'—kf?/:m——, y-«—-(lx——ﬁx :—"",dT, :-'2— T+4
From the integral H = /i we have
x

t—tO:l/Z_S dz (2.6)

B (2 — a?)(a? — z3)]"

where x,% and x,% are the roots of equation
h—azr?/2 —pat/4 =0

Setting f, = Oand Z, = z; with B> 0 and z) = O with o > 0, <
0, from (2, 6) we obtain

B>0, >0, t=(2/B)xz;> — 22 :F (¢, k) (2.7

ko= x (2,2 — 2,2, cosop =z/2x

a>0,p<<0, &= (—2/P),'F (9, k)

k=ax/2, sing = z/ x4

a<<0, >0, —a?/4B<<h<<0O, t=(2/B)"x,F (¢,k)
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E= (x?— 2,0, (1 —k?sin 29)/ = z/ x,

where F (@, k) is an incomplete elliptic integral of the first kind, Using the known
relations for Jacobi's functions, form (2,7) (with B = t) we obtain

>0 2>0, z(0) =z, cn (2KO/ n) (2.8)
=a (B/2) (2 — 2,/ (2R), x, = [2ak® / (B (1—2K%)]':
a>0, <0, 2(0) = z; sn (2K6/ n)
o = 1 (—p/2)x, / (2K), 2z = [—2ak?/ (B (1 -+ K]
a<<0,B >0, h<<0, 2(08) = z,dn (KO / x)
o=mxnB/2)x /K, =z =I[-2a/(F@2—FK)]"
In accordance with (2, 8) we distinguish three cases:
O, (w) =Dk ®) =D k), s=1,2,3.
>0, >0, s=1;, a>0, p<0, s=2
a<<0, >0, <0, s=3

To prove the theorem we use the expression for @, in(2.3). First, we consider
the case of even n and j = 1.
Let B > 0 and } > 0. In accordance with (2,3) we have

(l) 1 (k) = ( T _agkz)l/z Z aélxlifil (2.9)

i=0
4K

I = “ [(1 —k?) en' @ 4 (2% — 1) eni*’p — k2 cnitag] do

1]

Properties of elliptic functions imply that I;; = O when i is odd. Applying ! -
1 times the recurrent formula {3]

4K 4

i {— k2
0

&

4K
2y (1 — 2k? ,
0

we obtain the formula
Iy = ——f;—z[WPéh” (k) — (1 — k%) QLY (1) K (k) + OS2 (R E (k)] (2.10)

where PS:Y (k) and Q$hY (k) are polynomials of power 21 + 2 that contain

only even powers of k. Hence we subsequently use the notation

p =4, PP (p)=PUR (k). QL ()= Qi (k)
since K (k) and E (k) can be represented in the form of power series for ( <
k < 1 that contain only even powers of k, hence K = K (p) and E = E (p).

The calculation of Iy, ; yields the following algorithm of derivation of poly-
nomials P{V(p) and Qf‘ D (0)
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2 — (20 —1 ,
Piy = m:_—;;)z(i —p) QY (2.13)
.0 9% — (2 —2 ,
Qi = PV — 7‘:272’:3%(1 —20)Q"", 1=1,2,...,1

P (p) = 2(1 —p)/ (2L +3), Q"V(p) = (20— 1) /(2L + 3)
From (2. 10) we have

Inq = (40" [PED (0)K -+ Q5D (p) E] (2.12)

Pl () = oPE (0) — (1 — ) Q8P (0, QL () = Q" (0)

Polynomials P%Y and Q}if) have the following properties.
{1,2)

1°, po + go =0, where p, and g, are the free terms of polynomials P}’
and Q% , respectively, as implied by (2.12).
2°.  pus = 0, where p;;, is the coefficient at the leading term of polynornial

(1,2>
Pry

Proof, From(2.12)wehave pu, = pi) + q;ﬂ, where p{Y; and gY,
are coefficients at the leading terms of polynomials P{l'l and @) , respectively.
If follows from (2,11) that p,™ 4 ¢ = 0 (I = 0). Further proof is by induction,
Let the condition p;,, = O be satlsﬁed for 1=i—1, i.e. p; W + g = 0.
We shall show that then pii} + ¢} = O(i < n/2). Usng(2,11) we obtain

(1) (1) () 2 — (2 — 21 — (2i —2) o _

Pivi + Givy = — qi *——Em-) + p (1) + 2 i3 = ()
Property 2° is proved,
On the strength of property 2 we substitute PP for PLY,
3°. P (1) = 0. This property follows from (2. 11) and (2 12),
From (2 12) and (2, 9) we have
2 ;2 \(n+2))2 (n+3)/2
W)= -—(——) (—1-:-_%) F (o) (2.13)

Fi3(0) = Py 0K o)+ Qv () E (p)

{Pilesis QShss) = 2 aq, ;23U VD)

Uty = PEY () V= 08 ()

UL = PEP (), Vidy= Q57 ()

U= P& (), Vi =08 (o)

Zy=B(1—20)/(20), Zy = —B(1 +p)/2a) Zs =—P(2 —p)/(20)
In the second case, when a > 0, B < 0, using (2,8) we similarly obtain

OR =+ (- )" )T e 219
PED (o) = pPEY (0) + 08 (o), Q8 (p) = — Q&1 (0)

Polynomials P?’” {p), and 0P (p), I = 0,1, ..., n/2 are determined with

the use of the recurrent formulas
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P?’” _ 20— (2 —1) Oéz,x), i=1,2,.

T @5g)
2
Q8 = PP (p) + Q’f_—fz':__—'g) (1+0p) Q(2 o

PV () =2/ +3), Q8 (p) = — (1 +0) /(2 +3)

Since (2. 15) implies that polynomials P 22 and Q%2 have the properties 1
and 2, hence in conformity with (2, 13) the polynomials P§)y,; and Q%),,,
also have these properties,

In the third case, when o << 0, § > 0, —a?/ 4B <k < 0, wehave

(2.15)

(D%)( 2 ){m-z)iz (_ a )(n+3)/2 «

21 ( B 2—p
[2FS) (0) =7V Z5(0) Rujast (0)]

nig—1

Rujon (p) = Z‘ Qprag, i Zy Y (P)( 141 (P) + £ Qin (P))
=0

where the plus sign corresponds to the region lying inside the right-hand separatrix
loop (z > 0) and the minus sign to the region inside the left-hand separatrix loop
(z << 0). The polynomials P{3 (p) and Q% (p) are determined using the
recurrent formulas
2l — (28 —1 .
PR — =S He— 00, i=1.2..

(31) 3,0 , 20— (2i—2) @1
= P +—'-m(2—9)053

PPP)=2(0—1)/2L+3), QY (o) = (2—p)/(2L+ 3)

and posess properties 1 and 3.
The polynomials Py, (p) and Qu (p) in the expression for R, )y, (p) are
determined by the recurrent formulas

l—i+1
Py = "—ii”i—g(P_"i)Qi

{1 — 3 ,
Ot = Pit =i G =0 Qu i=1,2,..,1

Pi(p)=(—1/(1+2) Qulp)=@2—p)/2(+2)

Derivation of the standard form for j > 1 does not in principle differ from that
for j = 1. The final results are as follows.
In the case of § > 0, & >> 0 we have

2 1 2 \(nti+1)/ (n+2§+1)/2
oW == () (=) e (2.16)

Un/e (2.17)
(PP (), Q57 (o)) = %‘. Foe (P (0), Q51D (o)} -+

{LIJ’I"MIJ’ Nl]“f-Sz;}, b:l—{—r—{—k, b>2
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Fric = (= 1Y ClirnynCliam pmpt+0/2r (1 — p)+0/e-k

Lij = 80 1(1 =+ j — 2jp) pu=072 (1 — p)isn/z /2]

Nij = S l(1 + 1) (20 — 1) pU72 (1 — p)0=i2 ;2]

M” — 511 [— p(j+1)/2 (1 - p)(j+3)/2], Slj — 5,1 [p(_7+1)/z (1 — p)(/‘+1)/zJ
P () = oI () — (1 —p) Q8 (0), - Q1 (0) = QI (o)

where 8y; is the Kronecker delta, Expressions for P{LY (o) and QP (p) are
determined by the recurrent formulas

(1,3 _ 2b—(2i--3) (1.3,
Piy ——m(1—9) b>2
2b — (2i -2
(¥ = o — T (1~ 2000, i=1,2,.. ., b—2
3 2b—2
PP (p) = =7 (L —p), 0%%(0) = 22=2(2p 1)

This yields the method for transforming the formulas obtained above for j = 1 to
suit the case of j > 1. Thusfor @ > 0, B << 0 we have

(2) 2 \(n+i+1)/2 « (n+2j+1)/2
O () = (— ) () F3 (o) (2.18)
and for o << 0, [3>0, h<0
@y L2\ A\ (2.19)
1 I x

[2FS) =5 V Z5 (p) Rujos; (0))

Using the notation B (p) = + 1 V' Z; (0) Rn/as; (p), from (2.16), (2.18),
and (2, 19) we obtam formula (1. 3) For even j we have @) (p) = 0, s = 1, 2,
3. Polynomials Pl)syj, and Q) )y, s = 1, 2, 3 also posess properties 1 and 3
The case of odd n is similary considered, To do this it is sufficient to substitute,
retaining the notation ®f), AS); and BY), s =1, 2, 3, in respective expressions
n — 1 for n and carry out summation in R,_1y,,4; with respect to ! from 0
to (n — 1)/ 2. The theorem is proved.

3. In accordance with (2, 16) and (2, 18) the problem of obtaining an estimate of
the number of real roots of the generating equation @) (p) = 0, s = 1, 2 reduces
to that of estimating the number /N of real roots of the equation

FY () =0, 0<p<1, s=1,2 (3.1)

In the case of s = 3 the problem reduces to estimating the number of real roots
of the equation

2F) (0) =70V Z () Rupasi (0) = O (3.2)
when @y, = 0,1=0,1,2,...,n/2 —1, Eq. (3.2) assumes the form
F¥ (o) =0, andwhenay ; =0, 1 =0,1,2,... n/2 itreduces to the

algebraic equation Rp;s4; (p) = 0. Inthe lattercase N <Qn/2 -+ j.
Let us estimate the number N; of double roots of equation FSJ) () =0, 0<
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p <1, s=1,2,3. Note that fanction Fy is analytic when 0 < p < 1.
Differentiation of F$) (p) yields

d"Fyj(p)/d™ = POK + QP E, m=1,2, ... (3.3)
dpPs)
sy . [ 1 s )
PP =21 Lp0 1 o
a1, 1
(s) __ c s s
Q' = “?ﬂ -+ e (*r;—p-Pg:)I + 0%
c=n2+j—m
The double roots of equation FS) (p) = 0, s =1, 2, 3 satisfy the system
F$(p) =0, F)iaa(p) =0 (3.4)

Multiplying the first equation of this system by Pq(:)/z.'.j..l, the second by Pﬁf)/uj
and subtracting the first from the second, we obtain the system

F(0) =0, PShti(0) O5haio1(0) — PSlarica (p) Qasi (p) = 0 (3.5)

The number of nonzero roots of system (3. 4) does not exceed the number of nonzero
roots of system (3,5), Since on the strength of properties 1 and 3 and formulas (3, 3)
Pif)/HH and Q%),,; are polynomials of power 7/ 2 -+ j — 1, hence the
second of equations of system (3.5) is a polynomial of power n -+ 2j — 1.
it follows from (2, 13) and (2,17) that

2p+q=0, paf — pilas’ = (3.6)

where p and ¢ are coefficients at leading terms of polynomials Phk,; and Q.

respectively; p,(9 and ¢, are the free terms of polynomials P},,; and ngm 1
Por® and g, () are the free terms of polynomials P$);q and Qﬁf,2+j_1 ,
respectively, and s = 2, 3. When s = 1 , the coefficient at the leading term
of the second of Eqgs. (3.5) is by virtue of (3. 6) zero, and when s = 2, 3, the free
term vanishes. Thus the estimate Ny <( n -} 2 (j — 1) is correct. From this
we obtain the estimate N < 2NV, + 1 when s =1, 2 . In the quasilinear case
with B =0 wehave N n/2+j—1.

Note that d(fo]? () / dp = Fff')j_l (p4), Where Py is the root of the generat-
ing equation, If eFy'; (p,) (dp/ dI) > 0 (< 0), the state of equilibrium u =
u (py) of Eq. (2.4) is unstable (stable).

As an example we consider the equation

' 4 az + Pz = e (g -+ a7 + ag 22’ 3.7

Using the expression for ®,,®, s = 1,3 and the investigations of behavior of solu-
tions in the neighborhood of separatrices of the unperturbed system, we establish the
over-all topological structure of behavior of the solution of Eq. (3.7) when a <0,
B> 0. We assume that a;; 0,844 = 1,a= —1, and f=1. Thecaseof a; =0
with & >> 0 was considered in [4], and for any arbitrary « =0 in[5,6]. Let us
represent (3, 7) in the form

=Pz, p)=y ¥ =0QI(14s¢8 (3.8)

Q=z—z8+ e -+ ayx + ayrHy
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and investigate the behavior of solutions in the small neighborhood of the unperturbed
separatrix, Note that since the saddle parameter o, = Py’ + Q) |, = ¢e=+£0,

hence not more th;n one limit cycle can emerge from the separatrix loop for any

7""’\

Fig.4

fixed e==0 [7]. To solve the problem of relative position of separatrices we usethe
results of investigations [8], We denote by eA,* the parameter which defines with
an accuracy to terms of order e* the distance between the respective stable and un-
stable separatrices in the region of z > 0, and by gA,~ in the region of =z <0.
According to [8] we have

Ait = S [t 4 ayuro (2) 4 anixe® (t)] wo? (t) dt

where = {f), ¥o (¢} is the solution of the unperturbed system on the separatrix.
From (2.8) we have =z, (#) = + V2 (1/chi), yo () = F (sh ¢t/ ch¥), &k =1,

hence 9 n s

Apm2|5kg Ve +5 -

Using equations A% = 0 we determine
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gt = —ay~ = —16 (5 + 4ay) / (150V2)

When a;; = a* ++ O (g) , the solutions of system (3. 8) have the right-hand loop
of the separatrix, and when @) = ay5;" + O () its left-hand loop.

Investigation of solutions in regions inside the unperturbed separatrix (figure of
eight) is carried out using the standard form ®,® and outside it using ®,,®.

The real roots of equations @,,Y(p)=0, s=1,3 that determine % and the corres-
ponding closed curves of the unperturbed system from which emerge limit cycles for
small e==0, depend on parameters ¢y and 4y It is, therefore, possible
to divide the plane a,y, ay; in two regions that correspond to different numbers  of
limit cycles in the perturtbed systemn, It is established that for Eq. (3,7) the maximum
number of limit cycles is three,

The bifurcation boundaries, which are generally determined with an accuracy to
terms of order s, divide the plane a;;,4, in 32 regions, The most typical rough
phase pattems of system (3, 8) are plotted in Figs, 13, Part of the finer topological
structures appear in Fig, 4.

Although in the symmetric case, when a;= 0, we have @ (1) =0y ® (1)
and the generating equation actually determines limit cycles up to the separatrix (fig-
ure of eight in Fig, 4,a), itisnot so in the asymmetric case, when ay 5 0, be-
cause of @, (1) == ©,,®%1), When ay; 0 a limit cycle emerges from the
separatrix loop of the perturbed system (Fig. 4,b). This property cannot be establish-
ed by the method of small parameter,

Fig. 4,c corresponds to the fine structure that has a separatrix loop and a double
limit cycle, Transition from Fig, 1 to Fig, 2 takes place through the fine structure
shown in Fig, 4,b(4,3).
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